hash
哈希表
散列表(Hash table,也叫哈希表),是根据关键字(Key value)而直接访问在内存存储位置的数据结构。也就是说,它通过把键值通过一个函数的计算,映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。
一个通俗的例子是,为了查找电话簿中某人的号码,可以创建一个按照人名首字母顺序排列的表(即建立人名x到首字母F(x)的一个函数关系),在首字母为W的表中查找“王”姓的电话号码,显然比直接查找就要快得多。这里使用人名作为关键字,“取首字母”是这个例子中散列函数的函数法则F(),存放首字母的表对应散列表。关键字和函数法则理论上可以任意确定。
基本概念
- 若关键字为k,则其值存放在f(k)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数,按这个思想建立的表为散列表。
- 对不同的关键字可能得到同一散列地址,即k_1 != k_2,而f(k_1)=f(k_2),这种现象称为碰撞(英语:Collision)。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数f(k)和处理碰撞的方法将一组关键字映射到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“像”作为记录在表中的存储位置,这种表便称为散列表,这一映射过程称为散列造表或散列,所得的存储位置称散列地址。
- 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少碰撞。
构造散列函数
散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快定位。
- 直接定址法:取关键字或关键字的某个线性函数值为散列地址。即hash(k)=k或hash(k)=a*k + b,其中a\,b为常数(这种散列函数叫做自身函数)
- 数字分析法:假设关键字是以r为基的数,并且哈希表中可能出现的关键字都是事先知道的,则可取关键字的若干数位组成哈希地址。
- 平方取中法:取关键字平方后的中间几位为哈希地址。通常在选定哈希函数时不一定能知道关键字的全部情况,取其中的哪几位也不一定合适,而一个数平方后的中间几位数和数的每一位都相关,由此使随机分布的关键字得到的哈希地址也是随机的。取的位数由表长决定。
- 折叠法:将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址。
- 随机数法
- 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即hash(k)=k mod p, p <= m。不仅可以对关键字直接取模,也可在折叠法、平方取中法等运算之后取模。对p的选择很重要,一般取素数或m,若p选择不好,容易产生碰撞。
处理碰撞
为了知道碰撞产生的相同散列函数地址所对应的关键字,必须选用另外的散列函数,或者对碰撞结果进行处理。而不发生碰撞的可能性是非常之小的,所以通常对碰撞进行处理。常用方法有以下几种:
- 开放地址法
- 单独链表法
- 双散列
- 再散列
查找效率
散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。
查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:
- 散列函数是否均匀;
- 处理冲突的方法;
- 散列表的载荷因子(英语:load factor)。
载荷因子
散列表的载荷因子定义为:a = 填入表中的元素个数 / 散列表的长度
a是散列表装满程度的标志因子。由于表长是定值,a与“填入表中的元素个数”成正比,所以,a越大,表明填入表中的元素越多,产生冲突的可能性就越大;反之,a越小,标明填入表中的元素越少,产生冲突的可能性就越小。实际上,散列表的平均查找长度是载荷因子a的函数,只是不同处理冲突的方法有不同的函数。
对于开放定址法,荷载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了荷载因子为0.75,超过此值将resize散列表。